Motivation 00000	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work

Using Stationary Vehicles to Enhance Cooperative Positioning in Vehicular Ad-hoc Networks

R.H. Ordóñez-Hurtado¹ R.N. Shorten^{1,2}

¹The Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland

²IBM Research Ireland, Dublin, Ireland

International Conference on Connected Vehicles and Expo 2014, Vienna, Austria

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

Introduction 00	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work

▲□▼▲■▼▲■▼ ■目 のの()

Introduction

- Intelligent Transportation Systems
- 2 Motivation
 - Anchor-based positioning systems
 - Our proposal
- The Proposed Positioning Approach
 - Localisation capabilities
 - Localisation process
 - Node selection strategy
- 4 Experimental Results
 - Setup for simulations
 - Type of test
 - Simulation results

Introduction ●0	Motivation 00000	The Proposed Positioning Approach	Experimental Results	Conclusions and future work	
Intelligent Transportation Systems					

- TS: vehicles + infrastructure + human component.
- Problems: traffic congestion, COx emissions, routing.
- Trivial solutions: build additional capacity, incorporate new

Introduction ●0	Motivation 00000	The Proposed Positioning Approach	Experimental Results	Conclusions and future work	
Intelligent Transportation Systems					

- TS: vehicles + infrastructure + human component.
- Problems: traffic congestion, COx emissions, routing.
- Trivial solutions: build additional capacity, incorporate new

Introduction ●0	Motivation 00000	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work	
Intelligent Transportation Systems					

- TS: vehicles + infrastructure + human component.
- Problems: traffic congestion, COx emissions, routing.
- Trivial solutions: build additional capacity, incorporate new

Introduction ●0	Motivation 00000	The Proposed Positioning Approach	Experimental Results 00000000	Conclusions and future work
Intelligent Trans	sportation Syste	ms		

- TS: vehicles + infrastructure + human component.
- Problems: traffic congestion, COx emissions, routing.
- Trivial solutions: build additional capacity, incorporate new physical infrastructure.

Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Intelligent Tran			00000000	

Hamilton Institute

- TS: vehicles + infrastructure + human component.
- Problems: traffic congestion, COx emissions, routing.
- <u>Trivial solutions</u>: build additional capacity, incorporate new physical infrastructure.

Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work	
00	00000	00000	00000000		
Intelligent Transportation Systems					

Transportation systems

- Modern tools: wireless communication systems, information technologies.
 - Intelligent Transportation Systems (ITSs): flexibility, adaptation, scalability, better-informed decisions.

Some examples of ITSs

- <u>Advanced Traveler Information</u>: Real-Time Traffic Information.
- Advanced Public Transportation: Electronic Fare Payment.
- Fully integrated systems (V2V + V2I + integration): Positioning Systems for location-based services.

Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Intelligent Trans				

Transportation systems

- <u>Modern tools</u>: wireless communication systems, information technologies.
 - Intelligent Transportation Systems (ITSs): flexibility, adaptation, scalability, better-informed decisions.

Some examples of ITSs

- <u>Advanced Traveler Information:</u> Real-Time Traffic Information.
- Advanced Public Transportation: Electronic Fare Payment.
- Fully integrated systems (V2V + V2I + integration): Positioning Systems for location-based services.

Introduction	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Intelligent Trans		00000000	

Transportation systems

- Modern tools: wireless communication systems, information technologies.
 - Intelligent Transportation Systems (ITSs): flexibility, adaptation, scalability, better-informed decisions.

Some examples of ITSs

- <u>Advanced Traveler Information</u>: Real-Time Traffic Information.
- Advanced Public Transportation: Electronic Fare Payment.
- Fully integrated systems (V2V + V2I + integration): Positioning Systems for location-based services.

Introduction 00	Motivation 00000	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work

Positioning systems

- <u>Non-cooperative systems:</u> no interaction between vehicles. Mainly based on
 - Global Navigation Satellite Systems (GNSSs), and Augmented GNSSs (A-GNSSs).
 - Inertial Navigation Systems (INSs).
- <u>Cooperative systems:</u> interaction between vehicles. Mainly based on
 - Vehicle-to-vehicle/infrastructure (V2X) communication.
 - Cooperative-Positioning (CP) algorithms.

Introduction 00	Motivation	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work

Positioning systems

- <u>Non-cooperative systems:</u> no interaction between vehicles. Mainly based on
 - Global Navigation Satellite Systems (GNSSs), and Augmented GNSSs (A-GNSSs).
 - Inertial Navigation Systems (INSs).
- <u>Cooperative systems:</u> interaction between vehicles. Mainly based on
 - Vehicle-to-vehicle/infrastructure (V2X) communication.
 - Cooperative-Positioning (CP) algorithms.

Introduction 00	Motivation	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work

Positioning systems

- <u>Non-cooperative systems:</u> no interaction between vehicles. Mainly based on
 - Global Navigation Satellite Systems (GNSSs), and Augmented GNSSs (A-GNSSs).
 - Inertial Navigation Systems (INSs).
- <u>Cooperative systems:</u> interaction between vehicles. Mainly based on
 - Vehicle-to-vehicle/infrastructure (V2X) communication.

うせん 正正 スポットボル・スピットロッ

• Cooperative-Positioning (CP) algorithms.

Introd	

The Proposed Positioning Approac

Experimental Results

STI-

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Conclusions and future work

Anchor-based positioning systems

Motivation

Relevance of anchor nodes in CP algorithms

- Anchor: a node which knows its absolute location with high accuracy.
- <u>CP algorithms using anchors:</u> High accuracy for relative and absolute localisation of blind (unlocalised) nodes.

Road-side unit (RSU) as anchors

- Pros:
 - Only require to be localised once.
 - Located close to roads.
- Cons:
 - Costs for deploying RSUs are, in general, high
 - Fixed geographical distribution.

Introduction 00	Motivation ●0000	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Anchor bacad n	ocitioning austa	me		

- Anchor: a node which knows its absolute location with high accuracy.
- CP algorithms using anchors: High accuracy for relative and absolute localisation of blind (unlocalised) nodes.

STI-

Introduction		The Proposed Positioning Approach		Conclusions and future work
00	00000	00000	00000000	
An about a position in a statement				

- Anchor: a node which knows its absolute location with high accuracy.
- CP algorithms using anchors: High accuracy for relative and absolute localisation of blind (unlocalised) nodes.

Road-side unit (RSU) as anchors

- Pros:

 - Located close to roads.

• Cons:

• Costs for deploying RSUs are, in general, high.

STI-

• Fixed geographical distribution.

Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
	00000			
An alter have a section in a sectore				

- <u>Anchor:</u> a node which knows its absolute location with high accuracy.
- <u>CP algorithms using anchors</u>: High accuracy for relative and absolute localisation of blind (unlocalised) nodes.

Road-side unit (RSU) as anchors

- Pros:
 - Only require to be localised once.
 - Located close to roads.

• Cons:

• Costs for deploying RSUs are, in general, high.

STI-

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Fixed geographical distribution.

Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
	00000			
An alter have a section in a sectore				

- <u>Anchor:</u> a node which knows its absolute location with high accuracy.
- <u>CP algorithms using anchors</u>: High accuracy for relative and absolute localisation of blind (unlocalised) nodes.

Road-side unit (RSU) as anchors

- Pros:
 - Only require to be localised once.
 - Located close to roads.
- Cons:
 - Costs for deploying RSUs are, in general, high.

STI-

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Fixed geographical distribution.

Introduction 00	Motivation 0●000	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work
Anchor-based po	ositioning system	ns		

- Powered-on stationary vehicles: e.g. cars stopped in a queue.
- Powered-off stationary vehicles: e.g. parked cars.

Some uses of stationary vehicles as prioritised nodes

- Mitigation of inter-vehicle signal attenuation.
- Content downloading and distribution^a.

Introduction 00	Motivation 0●000	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work
Anchor-based po	ositioning syster	ns		

- Powered-on stationary vehicles: e.g. cars stopped in a queue.
- Powered-off stationary vehicles: e.g. parked cars.

Some uses of stationary vehicles as prioritised nodes

- Mitigation of inter-vehicle signal attenuation.
- Content downloading and distribution^a.

Introduction 00	Motivation ○●○○○	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Anchor-based po	ositioning system	ns		

- Powered-on stationary vehicles: e.g. cars stopped in a queue.
- Powered-off stationary vehicles: e.g. parked cars.

Some uses of stationary vehicles as prioritised nodes

- Mitigation of inter-vehicle signal attenuation.
- Content downloading and distribution^a.

Introduction 00	Motivation 0●000	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work
Anchor-based po	ositioning syster	ns		

- Powered-on stationary vehicles: e.g. cars stopped in a queue.
- Powered-off stationary vehicles: e.g. parked cars.

Some uses of stationary vehicles as prioritised nodes

- Mitigation of inter-vehicle signal attenuation.
- Content downloading and distribution^a.

Introduction 00	Motivation 0●000	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work
Anchor-based po	ositioning system	ns		

- Powered-on stationary vehicles: e.g. cars stopped in a queue.
- Powered-off stationary vehicles: e.g. parked cars.

Some uses of stationary vehicles as prioritised nodes

- Mitigation of inter-vehicle signal attenuation.
- Content downloading and distribution^a.

 $^a{\sf F}.$ Malandrino et al., "The role of parked cars in content downloading for vehicular networks", IEEE Transactions on Vehicular Technology, 2014.

Anchor-based p			00000000	
Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work

Pros/cons of using stationary vehicles for positioning purposes

- Pros:
 - On-board system remaining active: stationary cars can stay as active nodes.
 - Stationary cars turning into anchors: they can act like RSUs and have high priority for the CP process.

• Cons:

• A stationary car is non energy-autonomous.

Anchor-based p	00000		00000000	
Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work

Pros/cons of using stationary vehicles for positioning purposes

- Pros:
 - On-board system remaining active: stationary cars can stay as active nodes.
 - Stationary cars turning into anchors: they can act like RSUs and have high priority for the CP process.

○○○○□□□ <=> <=> <=> <□> <□> <□> <=> <=> <=> <=> <</p>

• Cons:

• A stationary car is non energy-autonomous.

Anchor-based p	00000		00000000	
Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work

Pros/cons of using stationary vehicles for positioning purposes

- Pros:
 - On-board system remaining active: stationary cars can stay as active nodes.
 - Stationary cars turning into anchors: they can act like RSUs and have high priority for the CP process.

- Cons:
 - A stationary car is non energy-autonomous.

Introd	

The Proposed Positioning Approac

Experimental Results

SH

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

Conclusions and future work

Anchor-based positioning systems

Some statistics

Motivation

- Duration of the stop: a car is stopped up to 50% of the travelling time and parked up to 95% of its life time (on average).
- Zones to be covered: stopped cars at intersections and parked cars have wide geographical distribution.
- Battery consumption: a typical on-board system using the 10% of the battery capacity can be continuously used up to 2 days.

Some potential benefits

- Coverage: at intersection and in between intersections.
- Time of availability: full time (on average).
- Localisation accuracy: lane-level (expected)

Introduction 00	Motivation 000●0	The Proposed Positioning Approach	Experimental Results	Conclusions and future we
Anchor-based p	ositioning system	ms		

- Duration of the stop: a car is stopped up to 50% of the travelling time and parked up to 95% of its life time (on average).
- Zones to be covered: stopped cars at intersections and parked cars have wide geographical distribution.
- Battery consumption: a typical on-board system using the 10% of the battery capacity can be continuously used up to 2 days.

SH

シック・ビデュ・ビディー・

- Coverage: at intersection and in between intersections.
- Time of availability: full time (on average).
- Localisation accuracy: lane-level (expected)

Introduction 00	Motivation 000€0	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work
Anchor-based	positioning syste	ms		

- Duration of the stop: a car is stopped up to 50% of the travelling time and parked up to 95% of its life time (on average).
- Zones to be covered: stopped cars at intersections and parked cars have wide geographical distribution.
- Battery consumption: a typical on-board system using the 10% of the battery capacity can be continuously used up to 2 days.

211

シック・ビデュ・ビディー・

- Coverage: at intersection and in between intersections.
- Time of availability: full time (on average).
- Localisation accuracy: lane-level (expected)

Introduction 00	Motivation 000●0	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Anchor-based p	ositioning syster	ns		

- Duration of the stop: a car is stopped up to 50% of the travelling time and parked up to 95% of its life time (on average).
- Zones to be covered: stopped cars at intersections and parked cars have wide geographical distribution.
- Battery consumption: a typical on-board system using the 10% of the battery capacity can be continuously used up to 2 days.

211

- Coverage: at intersection and in between intersections.
- Time of availability: full time (on average).
- Localisation accuracy: lane-level (expected)

Introduction 00	Motivation 000●0	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Anchor-based p	ositioning system	ns		

- Duration of the stop: a car is stopped up to 50% of the travelling time and parked up to 95% of its life time (on average).
- Zones to be covered: stopped cars at intersections and parked cars have wide geographical distribution.
- Battery consumption: a typical on-board system using the 10% of the battery capacity can be continuously used up to 2 days.

SIL

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Coverage: at intersection and in between intersections.
- Time of availability: full time (on average).
- Localisation accuracy: lane-level (expected).

Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
	00000			

- Duration of the stop: a car is stopped up to 50% of the travelling time and parked up to 95% of its life time (on average).
- Zones to be covered: stopped cars at intersections and parked cars have wide geographical distribution.
- Battery consumption: a typical on-board system using the 10% of the battery capacity can be continuously used up to 2 days.

SIL

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Coverage: at intersection and in between intersections.
- Time of availability: full time (on average).
- Localisation accuracy: lane-level (expected).

Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
	00000			

- Duration of the stop: a car is stopped up to 50% of the travelling time and parked up to 95% of its life time (on average).
- Zones to be covered: stopped cars at intersections and parked cars have wide geographical distribution.
- Battery consumption: a typical on-board system using the 10% of the battery capacity can be continuously used up to 2 days.

SIL

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Coverage: at intersection and in between intersections.
- Time of availability: full time (on average).
- Localisation accuracy: lane-level (expected).

Introduction 00	Motivation 000●0	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Anchor-based p	ositioning syster	ns		

- Duration of the stop: a car is stopped up to 50% of the travelling time and parked up to 95% of its life time (on average).
- Zones to be covered: stopped cars at intersections and parked cars have wide geographical distribution.
- Battery consumption: a typical on-board system using the 10% of the battery capacity can be continuously used up to 2 davs.

211

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Coverage: at intersection and in between intersections.
- Time of availability: full time (on average).
- Localisation accuracy: lane-level (expected).

Introduction 00	Motivation ○○○○●	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work
Our proposal				

The current work:

- Stationary vehicles are proposed to be used as prioritised nodes in the CP process:
 - Stationary cars can easily become anchor nodes.
 - Anchor cars can easily be identified.

Introduction 00	Motivation ○○○○●	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work
Our proposal				

The current work:

- Stationary vehicles are proposed to be used as prioritised nodes in the CP process:
 - Stationary cars can easily become anchor nodes.
 - Anchor cars can easily be identified.

Introduction 00	Motivation ○○○○●	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work
Our proposal				

The current work:

• Stationary vehicles are proposed to be used as prioritised nodes in the CP process:

◆□> < => < => < => < => < <</p>

- Stationary cars can easily become anchor nodes.
- Anchor cars can easily be identified.

Localisation ca	nahilities			
00	00000	00000	00000000	
Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work

Localisation capabilities

- A-GNSS positioning
 - for scenarios without time restrictions (e.g. powered-off blind stationary nodes).

• CP

- for scenarios with access to information from nearby vehicles (blind stationary/moving vehicles).
- GNSS positioning
 - for scenarios where nearby vehicles are not available but enough number of satellites,
- INS positioning
 - for scenarios where neither nearby vehicles nor satellites are available.

šfi⊨

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
00	00000	○●○○○	000000000	
Localisation pro	cess			

Localisation process

- Blind stationary vehicles:
 - If at least 3 anchor nodes are available inside the communication zone, use a CP algorithm.
 - Use A-GNSS positioning as back-up method.
 - After successful localisation, they become anchors.
- Blind moving vehicles:
 - Use a CP algorithm if at least 1 neighbor node is available inside the communication zone.
 - Otherwise, use GNSSs/INSs.
 - After successful localisation becomes at most a pseudo-anchor (moving car with access to 3 anchors).

▲■▶ ▲ ■▶ ▲ ■▶ ■|■ のQ@

Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
00	00000	○●○○○	000000000	
Localisation pro	cess			

Localisation process

- Blind stationary vehicles:
 - If at least 3 anchor nodes are available inside the communication zone, use a CP algorithm.
 - Use A-GNSS positioning as back-up method.
 - After successful localisation, they become anchors.
- Blind moving vehicles:
 - Use a CP algorithm if at least 1 neighbor node is available inside the communication zone.
 - Otherwise, use GNSSs/INSs.
 - After successful localisation becomes at most a pseudo-anchor (moving car with access to 3 anchors).

Introduction 00	Motivation 00000	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Node selection	strategy			

Node selection strategy

- At most three vehicles are going to be considered in the CP process of any vehicle of interest.
- Node selection is according to three different priority levels:
 - first priority for anchor nodes,
 - second priority for pseudo-anchor nodes (blind vehicles with access to enough information from anchor nodes),

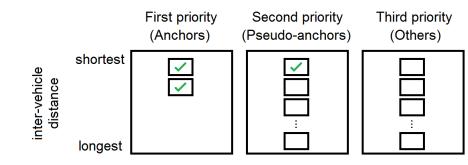
・ * 母 * * ヨ * * ヨ * ヨ * シック

• third priority for the remaining vehicles.

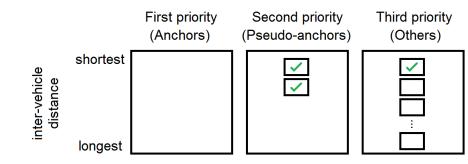
Introduction 00	Motivation 00000	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Node selection	strategy			

Node selection strategy

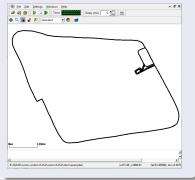
- At most three vehicles are going to be considered in the CP process of any vehicle of interest.
- Node selection is according to three different priority levels:
 - first priority for anchor nodes,
 - second priority for pseudo-anchor nodes (blind vehicles with access to enough information from anchor nodes),


★御★ ★ 国★ ★ 国★

• third priority for the remaining vehicles.


Introduction 00	Motivation 00000	The Proposed Positioning Approach	Experimental Results 000000000	Conclusions and future work
Node selection	strategy			

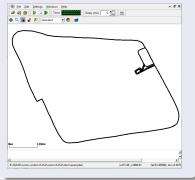
Introduction 00	Motivation 00000	The Proposed Positioning Approach ○○○○●	Experimental Results	Conclusions and future work
Node selection :	strategy			



Introduction 00	Motivation 00000	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Setup for simul	ations			

SUMO side

The road: A street circuit around the North Campus, National University of Ireland -Maynooth.



Introduction 00	Motivation 00000	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Setup for simul	ations			

SUMO side

The road: A street circuit around the North Campus, National University of Ireland -Maynooth.

Parameters

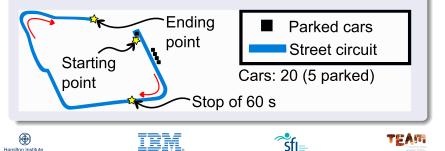
- Simulated vehicles: 20 cars (5 of them parked).
- Attributes of vehicles: 5 cars of each type A,B,C,D.

Туре	A	В	C	D
Accel	2.15	5.5	4.54	50
Decel	1.22	5.0	4.51	30
Length	1.75	6.1	4.45	40
Max.S.	2.45	6.1	4.48	50

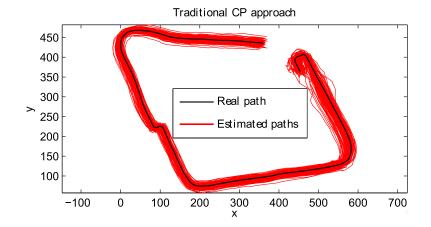
Setup for simul	lations			
			00000000	
Introduction	Motivation	The Proposed Positioning Approach	Experimental Results	Conclusions and future work

Algorithm side

- CP Algorithm:
 - Extended Kalman Filter (EKF) with distributed architecture^a.
 - Data fusion: inter-vehicle distance measurement + vehicle kinematics (velocity).
- Parameters:
 - GPS noise covariance: 100.
 - Covariance of mobility variations: 2.
 - Covariance of inter-vehicle measurement noise: 0.05.
 - Covariance for velocity measurements: 0.5.


 $^a\mathsf{R}.$ Parker and S. Valaee, "Cooperative vehicle position estimation", in IEEE ICC '07.

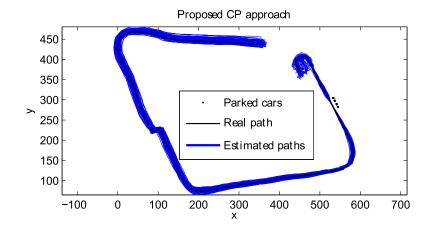
	Motivation 00000	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Type of test				


Type of test

- Scenario:
 - 5 parked cars.
 - 15 cars going from the starting point to the ending point, with a stop of 60 seconds at a given intersection.
 - Communication zone: 100 m.
 - Number of repetitions: 100.

< 回 > < 回 > < 回 >

Introduction 00	Motivation 00000	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Simulation resu	lts			


STI

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Hamilton Institute

Introduction 00	Motivation 00000	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Simulation resu	lts			

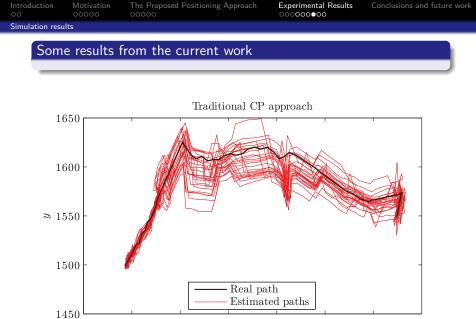
Sti

<ロト < 団ト < 団ト < 団ト < 団ト 三国 のへで</p>

Introduction 00	Motivation 00000	The Proposed Positioning Approach	Experimental Results	Conclusions and future work
Simulation resu	lts			

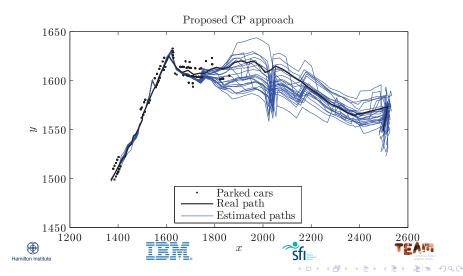
Quantitative analysis

RMS lo	ocalisatio	n error (
Traditional CP Proposed CP					
approach approach					
Mean	σ	Mean	σ	Average improvement	
9.04 5.09 4.06 2.97		55.09%			


šfi⊨

TEAM

(日) (월) (로) (로) (로) (명) (이)



Hamilton Institute

Introduction 00	Motivation 00000	The Proposed Positioning Approach	Experimental Results ○○○○○○●○	
Simulation res	ults			

Some results from the current work

Conclusions and future work

Introduction 00	Motivation 00000	The Proposed Positioning Approach	Experimental Results ○○○○○○○●	Conclusions and future work
Simulation resu	lts			

Quantitative analysis

Communication zone: 15 meters. Repetitions: 25.

RMS localisation error (meters)					
Traditional CP Proposed CP					
approach approach					
Mean	σ	Mean	σ	Average improvement	
8.46	6.97	3.14 6.27		62.85%	

Preliminary conclusions

- Direct:
 - Accuracy for localisation was greatly improved (about 55%) with respect to a traditional approach.
 - Zones covered by stationary vehicles showed to have wide geographical distribution.

Indirect:

• Potentially any CP algorithm can be benefited from the proposed CP approach.

Current and future work

- General paper [3] is being prepared: battery-consumption issues, large-scale tests, more detailed analyses.
- [3] R.H. Ordóñez-Hurtado et al., "Cooperative Positioning in Vehicular Ad-hoc Networks Supported by Stationary Vehicles", submitted to IEEE Transactions on Intelligent Transportation Systems.

Preliminary conclusions

- Direct:
 - Accuracy for localisation was greatly improved (about 55%) with respect to a traditional approach.
 - Zones covered by stationary vehicles showed to have wide geographical distribution.
- Indirect:
 - Potentially any CP algorithm can be benefited from the proposed CP approach.

Current and future work

• General paper [3] is being prepared: battery-consumption issues, large-scale tests, more detailed analyses.

[3] R.H. Ordóñez-Hurtado et al., "Cooperative Positioning in Vehicular Ad-hoc Networks Supported by Stationary Vehicles", submitted to IEEE Transactions on Intelligent Transportation Systems.

Preliminary conclusions

- Direct:
 - Accuracy for localisation was greatly improved (about 55%) with respect to a traditional approach.
 - Zones covered by stationary vehicles showed to have wide geographical distribution.
- Indirect:
 - Potentially any CP algorithm can be benefited from the proposed CP approach.

Current and future work

• General paper [3] is being prepared: battery-consumption issues, large-scale tests, more detailed analyses.

[3] R.H. Ordóñez-Hurtado et al., "Cooperative Positioning in Vehicular Ad-hoc Networks Supported by Stationary Vehicles", submitted to IEEE Transactions on Intelligent Transportation Systems.

- 嗪 F. Malandrino et al., "The role of parked cars in content downloading for vehicular networks", IEEE Transactions on Vehicular Technology, 2014.

R. Parker and S. Valaee, "Cooperative vehicle position" estimation", in IEEE ICC '07.

📎 R.H. Ordóñez-Hurtado et al., "Cooperative Positioning in Vehicular Ad-hoc Networks Supported by Stationary Vehicles", submitted to IEEE Transactions on Intelligent Transportation Systems.

Appendix

For Further Reading

Thanks!

Questions?

